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Magnetic-Flux Penetration and Critical Currents in Superconducting Strips with Slits
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We theoretically investigate transport-current-induced magnetic-flux penetration into superconducting
strip lines with slits. Even when the individual strips have no bulk pinning, geometrical barriers pre-
vent penetration of magnetic flux into the innermost strips while flux quasistatically penetrates into the
outermost slits. The critical current of strip lines with 2N slits at zero applied magnetic field is found
to be enhanced by a factor of �N 1 1�1�2 above that of a single strip line without slits. Under suitable
conditions, a domelike flux distribution due to the geometrical barrier can appear in the individual strips
even in the absence of an applied magnetic field.
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Recent experimental and theoretical studies have shown
that a potential barrier of geometric origin can prevent
magnetic flux from penetrating into a type-II superconduct-
ing flat strip subjected to a perpendicular magnetic field
with a transport current [1–3]. This geometrical-barrier
effect results in a domelike distribution of magnetic field
[1,2], hysteretic magnetization [1,2], and a nonzero criti-
cal current [3], despite the absence of bulk pinning. The
surrounding magnetic environment also has been shown to
strongly affect the geometrical barrier and to enhance the
critical current of the strip [4]. In this Letter, we demon-
strate how magnetic flux penetrates into a finite number of
coplanar strips (i.e., a strip line with multiple slits) carry-
ing a transport current. We propose a simple and effective
method to enhance critical currents in strip lines without
bulk pinning: Make narrow slits near the edges of the strip
line, and the critical current will become larger by a factor
of �N 1 1�1�2 for 2N slits.

First we briefly review how to calculate the critical cur-
rent in a single strip without bulk pinning [3,5]. The su-
perconducting strip under consideration has a rectangular
cross section of width 2a and thickness d, and is infinitely
extended along the z axis (i.e., the cross section occupies
the area jxj , a and jyj , d�2 ø a). It is convenient
to express the two-dimensional field distribution as an an-
alytic function H�z � � Hy�x, y� 1 iHx�x, y� of the com-
plex variable z � x 1 iy [1,5]. When the strip carries a
transport current It along the z axis in the absence of an ap-
plied magnetic field, the complex field around the strip in
the Meissner state is [6,7] H�z � � �It�2p� �z 2 2 a2�21�2.
The magnetic field at the edge at x � a 1 0 and y �
0 is obtained as H�a 1 d� � Hy�x � a 1 d, y � 0� �
�It�2p� �2ad�21�2, where we have introduced a cutoff
length d on the order of the thickness d [1–3]. The criti-
cal current Ics for the strip without bulk pinning is given
by the current at which the edge field H�a 1 d� reaches
a certain flux-entry field Hs [2,3]. The field Hs may be
equal to the lower critical field Hc1 in the absence of a
Bean-Livingston barrier [8] or may be on the order of the
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thermodynamic field Hc in the presence of an ideal surface
barrier [9]. Thermal fluctuations, however, may cause the
effective Hs to be smaller than that without thermally ac-
tivated vortex nucleation. We thus find the critical current
of a single strip at zero magnetic field to be [3]

Ics � 2pHs�2ad�1�2. (1)

The magnetic-field distribution around multiple strips is
much more complicated than that around a single strip.
It is possible to investigate flux penetration into a peri-
odic array of an infinite number of strips by using a simple
transformation technique [10]. In the present paper, how-
ever, we show how to calculate the behavior for a strip
line consisting of a finite number of strips. We first con-
sider a strip line of total width 2a with slits at c , x , b
and 2b , x , 2c, where a . b . c. In other words,
the strip line consists of three individual coplanar strips,
as shown in Fig. 1. The strip thickness d is assumed
to be somewhat larger than the penetration depth l, but
much smaller than the smallest of a 2 b, b 2 c, and
2c. We consider flux penetration into a strip line carrying
transport current It along the z axis in the absence of an
applied magnetic field. The three individual strips are infi-
nitely long along the z axis, and their ends are connected at
z ! 6`. The total current It is therefore divided among
the three strips: the inner strip at jxj , c carries Iin and
the two outer strips at b , jxj , a carry Iout each, where
It � Iin 1 2Iout.

x

y

+a−a +b−b +c−c

d

FIG. 1. Superconducting strip line with slits. Superconducting
strips (thickness d, jyj , d�2, infinitely extended along the z
axis) occupy the gray areas: the inner strip at jxj # c, the outer
strips at b , jxj , a, and the slits at c , jxj , b. The inner
strip carries a net current Iin, the two outer strips carry Iout each,
and the total transport current is It � Iin 1 2Iout.
© 2001 The American Physical Society
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The complex field for such a strip line, provided that all
the strips remain in the Meissner state, is obtained by the
conformal mapping

H�z � �
It

2p

z 2 2 g2

��z 2 2 a2� �z 2 2 b2� �z 2 2 c2��1�2 , (2)

where the parameter g (c , g , b) depends on It . Un-
der suitable conditions, however, domelike distributions of
magnetic flux due to the geometrical barrier [1–3] can oc-
cur in the outer strips. The corresponding complex field is
then given by

H�z � �
It

2p

∑
�z 2 2 a2� �z 2 2 b2�

�z 2 2 a2� �z 2 2 b2� �z 2 2 c2�

∏1�2

, (3)

where the domelike flux distributions are at b , jxj , a

in the outer strips for b , b , a , a.
With increasing It , the flux-penetration process proceeds

in three steps: (i) no flux penetration, (ii) quasistatic pene-
tration, and (iii) continuous penetration, producing a resis-
tive state. In addition, two kinds of step (ii) exist: (ii-a)
without domelike flux distributions and (ii-b) with dome-
like flux distributions in the outer strips. See Fig. 2.

Step (i), 0 , It , I1: Magnetic flux cannot penetrate
into the strips, and the field distribution is given by Eq. (2).
The parameter g � g1 �c , g1 , b� in Eq. (2) is deter-
mined by the condition that the total magnetic flux in the
slits is zero,

Rc
b dx Hy�x, y � 0� � 0. The resulting ex-

pression for g1 is constant, independent of It:

g1 � c�P�21 1 c2�b2, k��K�k��1�2, (4)

FIG. 2. Characteristic currents in the It versus b plane for
magnetic-flux penetration into the strip line. The characteristic
currents I1 (thin solid), I2 (thin dashed), Ic1 (bold solid), and Ic2
(bold dashed) are given by Eqs. (5), (8), (7), and (10), respec-
tively. Region (i), 0 , It , I1: no magnetic flux penetrates into
the strips. Region (ii-a), I1 , It , �I2 or Ic1� [i.e., I1 , It , I2
for b , �ac�1�2 and I1 , It , Ic1 for b . �ac�1�2]: magnetic
flux penetrates into slits without domelike flux distributions.
Region (ii-b), I2 , It , Ic2: magnetic flux penetrates into slits
with domelike flux distributions in the outer strips. Region (iii),
It . Ic [where the critical current Ic is given by Ic � Ic2 for
b , �ac�1�2 and Ic � Ic1 for b . �ac�1�2]: flux continuously
penetrates the strips and annihilates at the center, producing a
resistive state.
where K�k� and P�p, k� are the complete elliptic in-
tegrals of the first and third kind, respectively, and
k � �a�b� ��b2 2 c2���a2 2 c2��1�2. The magnetic
fields at the edges of the strips are obtained from
Eq. (2) as He,a � H�a 1 d�, He,b � H�b 2 d�, and
He,c � H�c 1 d�, where d � d. The edge fields increase
linearly with increasing current It . 0, and the inequalities
He,a $ He,c . jHe,bj hold in most cases. The magnetic
fields at the edges are smaller than the flux-entry field
Hs for 0 , It , I1; i.e., max�He,a, jHe,bj, He,c� , Hs,
and no magnetic flux penetrates into the strips. However,
at It � I1, He,a attains the value Hs, and magnetic flux
nucleates at the outermost edges, x � 6a. The upper
limit of It for step (i), obtained from Eq. (2), is given by

I1

Ics
�

��a2 2 b2� �a2 2 c2��1�2

a2 2 g
2
1

, (5)

where Ics is given by Eq. (1). The value of I1 is always
less than Ics, as shown by the thin solid curve in Fig. 2.
The field and current distributions at I1 are shown by the
thin solid curves in Fig. 3.

Step (ii-a), I1 , It , �I2 or Ic1�: Magnetic flux qua-
sistatically penetrates into the slits without domelike-flux
distributions in the strips. Here magnetic flux nucleates
at the outermost edges x � 6a, flows entirely across the
outer strips, and enters into the slits. The edge field He,a �
Hs remains constant, and magnetic flux penetrates only so

FIG. 3. Distributions of (a) the magnetic field Hy�x, 0� �
Re�H�x�� and (b) the current density Jz�x� � �2�d� Im�H�x��
at y � 0 for It � I1 (thin solid), It � I2 (dashed), and It � Ic2
(bold solid). The distributions are calculated from Eqs. (2) and
(3) with b�a � 0.85 and c�a � 0.8.
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long as It increases. The induced electric field depends on
the ramp rate of the transport current, dIt�dt, but is neg-
ligibly small for quasistatic ramping, dIt�dt ! 0. Such
a flux-penetration process is similar to that in the critical-
state model [11] because of flux pinning at the slits. The
field distribution is now given by Eq. (2) in which the pa-
rameter g � g2�It� is an increasing function of It . The
condition that He,a � Hs yields

g2�It� �

Ω
a2 2

Ics

It
��a2 2 b2� �a2 2 c2��1�2

æ1�2

. (6)

There exist two characteristic currents as upper limits of
the step (ii-a), the critical current Ic1 for b . �ac�1�2 and
I2 for b , �ac�1�2.

For b . �ac�1�2, He,c reaches the flux-entry field Hs at
It � Ic1 while c , g2 , b holds. The critical current Ic1
is determined by He,a � He,c � Hs from Eq. (2):

Ic1

Ics
�

�a�a2 2 b2��1�2 1 �c�b2 2 c2��1�2

�a�a2 2 c2��1�2 . (7)

As shown as the bold solid curve in Fig. 2, the right-
hand side of Eq. (7) achieves its maximum value �1 1

c�a�1�2 at b � �ac�1�2, and decreases monotonically for
�ac�1�2 , b , a.

For c , b , �ac�1�2, on the other hand, the step (ii-a)
for I1 , It , I2 terminates when g2�It� � b at It � I2,
while He,c , Hs holds. The value of I2 is determined by
g2�I2� � b in Eq. (6),

I2

Ics
�

µ
a2 2 c2

a2 2 b2

∂1�2

, (8)

which is larger than 1, as shown as the thin dashed curve in
Fig. 2. The field and current distributions at I2 are shown
by the dashed curves in Fig. 3.

Step (ii-b), I2 , It , Ic2, c , b , �ac�1�2: Magnetic
flux quasistatically penetrates into the slits with domelike-
flux distributions in the outer strips. For currents It just
above I2, nucleating vortices are no longer swept entirely
across the outermost strips into the slits as in step (ii-a).
Instead, some vortices remain in the outer strips. Hence
the Meissner-state Eq. (2) is no longer valid, and the cor-
rect expression of the complex field for step (ii-b) is now
given by Eq. (3). One edge of the domelike distribu-
tion of magnetic flux, b in Eq. (3), should be close to
b; in other words, b 2 b is of the order of the thick-
ness d. Some of the magnetic flux nucleated at the outer-
most edges x � 6a remains in the domelike distributions
at b � b , jxj , a in the outer strips, and the rest exits
from x � 6b and enters into the slits. The outer edge of
the domelike distributions of magnetic flux, a�It�, is de-
termined from Eq. (3) by He,a � Hs with b � b, and is
given by
2872
a�It� � �a2 2 �Ics�It�2�a2 2 c2��1�2. (9)

The critical current Ic2 for c , b , �ac�1�2 is determined
from Eq. (3) by He,a � He,c � Hs ,

Ic2�Ics � �1 1 c�a�1�2, (10)

which is shown as the bold dashed line in Fig. 2. Note that
when narrow slits are present close to the edges, such that
a 2 c ø a, the critical current Ic2 can be larger than Ics

by the factor of �1 1 c�a�1�2 �
p

2.
Figure 3 shows the distributions of the magnetic field

Hy and the current density Jz at y � 0 for b , �ac�1�2

at several currents It in step (ii). At the end of step (ii-b),
at It � Ic2, a domelike distribution of Hy exists in the re-
gion b , x , a�Ic2� � �ac�1�2. The values of Hy and
Jz near the outermost edge x � a are almost unchanged.
Note that the Jz at b , x , a (and hence the net cur-
rent Iout in each outer strip) decreases with increasing
It � Iin 1 2Iout, whereas the Jz at 0 , x , c (and hence
the net current Iin in the inner strip) increases. The redis-
tribution of the currents between Iin and Iout weakens the
concentration of the current near the outermost edges, and
is responsible for the critical-current enhancement.

Step (iii), It . Ic: Magnetic flux continuously pene-
trates into the strips and flows toward the center of the strip
line, x � 0, where positive flux from x . 0 and nega-
tive flux from x , 0 annihilate. A nonzero steady-state
electric field occurs when It exceeds the critical current,
Ic � Ic1 in Eq. (7) for b . �ac�1�2 or Ic � Ic2 in Eq. (10)
for b , �ac�1�2. See Fig. 2.

We have extended the above approach to the case
of 2N 1 1 coplanar strips (i.e., a symmetric strip line
with 2N slits), where N $ 1. The superconducting
strips occupy the regions bn , jxj , an for 0 # n # N
with 0 � b0 , a0 , b1 , a1 , · · · , bN21 , aN21 ,

bN , aN . With regard to the parameters an, we introduce
an equation with respect to s,

NX
n�0

an

s2 2 a2
n

� 0 , (11)

which has N positive solutions s � sn in the range
of an21 , sn , an for 1 # n # N . Equation (11)
with N � 1, for example, has a positive solution of
s1 � �a0a1�1�2. If the configuration of strips satisfies
bn $ sn for all 1 # n # N , static magnetic flux cannot
exist in any of the strips. The complex field for 2N 1 1
strips containing no magnetic flux is given by [cf. Eq. (2)]

H�z � �
It

2p

QN
n�1�z 2 2 g2

n�
��z 2 2 a2

0�
QN

n�1�z 2 2 a2
n� �z 2 2 b2

n��1�2
.

(12)

The critical flux-entry condition for all strips, coupled
equations H�an 1 d� � Hs using Eq. (12) for 0 # n #

N at It � Ic1,N , leads to the critical current [cf. Eq. (7)],
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Ic1,N

Ics
�

NX
k�0

∑
ak

aN

QN
n�1�a2

k 2 b2
n�QN

n�0,nfik�a2
k 2 a2

n�

∏1�2

, (13)

where
QN

n�0,nfik means the product over 0 # n # N ex-
cept for the factor with n � k.

If bn , sn holds for all 1 # n # N , on the other hand,
domelike distributions of magnetic flux can exist in all
strips except for the innermost one at jxj , a0. The cor-
responding complex field is given by [cf. Eq. (3)]

H�z � �
It

2p

∑
1

z 2 2 a2
0

NY
n�1

�z 2 2 a2
n� �z 2 2 b2

n�
�z 2 2 a2

n� �z 2 2 b2
n�

∏1�2

,

(14)

where domelike distributions of magnetic flux are at bn �
bn , jxj , an for 1 # n # N . (See also Ref. [12].) The
critical flux-entry condition for all strips, H�an 1 d� �
Hs using Eq. (14) for 0 # n # N at It � Ic2,N , leads to
the critical current Ic2,N [cf. Eq. (10)],

Ic2,N

Ics
�

√
NX

k�0

ak

aN

!1�2

. (15)

The critical currents in Eqs. (13) and (15) obey the inequal-
ity Ic1,N # Ic2,N ; in other words, Ic2,N is the maximized
value of Ic1,N with changing bn for fixed an. The Ic1,N co-
incide with Ic2,N when bn � sn holds for all 1 # n # N .
The Ic2,N is further maximized as Ic2,N�Ics � �N 1 1�1�2,
when all slits are narrow and are close to the outermost
edges, i.e., when aN 2 a0 ø aN . The critical-current en-
hancement arises from the flux-pinning effect of the slits
and is similar to flux pinning in superconducting layers [9].

In summary, we have investigated the penetration of
magnetic flux into current-carrying strip lines with slits in
the absence of an applied magnetic field. Domelike distri-
butions of magnetic flux due to the geometrical barrier can
exist in strips even without an applied magnetic field. The
slits act as pinning centers, and penetration of magnetic
flux is delayed. The critical current Ic of a strip line with
slits is larger than that of a single strip line without slits, Ics.
For 2N 1 1 coplanar strips (i.e., strip lines with 2N slits),
the critical current can be as high as Ic�Ics � �N 1 1�1�2
when the slits are narrow and lie close to the outermost
edges.
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